/**************************************************************************/ /* metal3_objects.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ /**************************************************************************/ /* */ /* Portions of this code were derived from MoltenVK. */ /* */ /* Copyright (c) 2015-2023 The Brenwill Workshop Ltd. */ /* (http://www.brenwill.com) */ /* */ /* Licensed under the Apache License, Version 2.0 (the "License"); */ /* you may not use this file except in compliance with the License. */ /* You may obtain a copy of the License at */ /* */ /* http://www.apache.org/licenses/LICENSE-2.0 */ /* */ /* Unless required by applicable law or agreed to in writing, software */ /* distributed under the License is distributed on an "AS IS" BASIS, */ /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */ /* implied. See the License for the specific language governing */ /* permissions and limitations under the License. */ /**************************************************************************/ #include "metal3_objects.h" #include "metal_utils.h" #include "pixel_formats.h" #include "rendering_device_driver_metal3.h" #include "rendering_shader_container_metal.h" #include using namespace MTL3; MDCommandBuffer::MDCommandBuffer(MTL::CommandQueue *p_queue, ::RenderingDeviceDriverMetal *p_device_driver) : _scratch(p_queue->device()), queue(p_queue) { device_driver = p_device_driver; type = MDCommandBufferStateType::None; use_barriers = device_driver->use_barriers; if (use_barriers) { // Already validated availability if use_barriers is true. MTL::Device *device = p_queue->device(); NS::SharedPtr rs_desc = NS::TransferPtr(MTL::ResidencySetDescriptor::alloc()->init()); rs_desc->setInitialCapacity(10); rs_desc->setLabel(MTLSTR("Command Residency Set")); NS::Error *error = nullptr; _frame_state.rs = NS::TransferPtr(device->newResidencySet(rs_desc.get(), &error)); CRASH_COND_MSG(error != nullptr, vformat("Failed to create residency set: %s", String(error->localizedDescription()->utf8String()))); } } void MDCommandBuffer::begin_label(const char *p_label_name, const Color &p_color) { NS::SharedPtr s = NS::TransferPtr(NS::String::alloc()->init(p_label_name, NS::UTF8StringEncoding)); command_buffer()->pushDebugGroup(s.get()); } void MDCommandBuffer::end_label() { command_buffer()->popDebugGroup(); } void MDCommandBuffer::begin() { DEV_ASSERT(commandBuffer.get() == nullptr && !state_begin); state_begin = true; bzero(pending_after_stages, sizeof(pending_after_stages)); bzero(pending_before_queue_stages, sizeof(pending_before_queue_stages)); binding_cache.clear(); _scratch.reset(); release_resources(); } MDCommandBuffer::Alloc MDCommandBuffer::allocate_arg_buffer(uint32_t p_size) { return _scratch.allocate(p_size); } void MDCommandBuffer::end() { switch (type) { case MDCommandBufferStateType::None: return; case MDCommandBufferStateType::Render: return render_end_pass(); case MDCommandBufferStateType::Compute: return _end_compute_dispatch(); case MDCommandBufferStateType::Blit: return _end_blit(); } } void MDCommandBuffer::commit() { end(); if (use_barriers) { if (_scratch.is_changed()) { Span bufs = _scratch.get_buffers(); _frame_state.rs->addAllocations(reinterpret_cast(bufs.ptr()), bufs.size()); _scratch.clear_changed(); _frame_state.rs->commit(); } } commandBuffer->commit(); commandBuffer.reset(); state_begin = false; } MTL::CommandBuffer *MDCommandBuffer::command_buffer() { DEV_ASSERT(state_begin); if (commandBuffer.get() == nullptr) { commandBuffer = NS::RetainPtr(queue->commandBuffer()); if (use_barriers) { commandBuffer->useResidencySet(_frame_state.rs.get()); } } return commandBuffer.get(); } void MDCommandBuffer::_encode_barrier(MTL::CommandEncoder *p_enc) { DEV_ASSERT(p_enc); static const MTL::Stages empty_stages[STAGE_MAX] = { 0, 0, 0 }; if (memcmp(&pending_before_queue_stages, empty_stages, sizeof(pending_before_queue_stages)) == 0) { return; } int stage = STAGE_MAX; // Determine encoder type by checking if it's the current active encoder. if (render.encoder.get() == p_enc && pending_after_stages[STAGE_RENDER] != 0) { stage = STAGE_RENDER; } else if (compute.encoder.get() == p_enc && pending_after_stages[STAGE_COMPUTE] != 0) { stage = STAGE_COMPUTE; } else if (blit.encoder.get() == p_enc && pending_after_stages[STAGE_BLIT] != 0) { stage = STAGE_BLIT; } if (stage == STAGE_MAX) { return; } p_enc->barrierAfterQueueStages(pending_after_stages[stage], pending_before_queue_stages[stage]); pending_before_queue_stages[stage] = 0; pending_after_stages[stage] = 0; } void MDCommandBuffer::pipeline_barrier(BitField p_src_stages, BitField p_dst_stages, VectorView p_memory_barriers, VectorView p_buffer_barriers, VectorView p_texture_barriers, VectorView p_acceleration_structure_barriers) { MTL::Stages after_stages = convert_src_pipeline_stages_to_metal(p_src_stages); if (after_stages == 0) { return; } MTL::Stages before_stages = convert_dst_pipeline_stages_to_metal(p_dst_stages); if (before_stages == 0) { return; } // Encode intra-encoder memory barrier if an encoder is active for matching stages. if (render.encoder.get() != nullptr) { MTL::RenderStages render_after = static_cast(after_stages & (MTL::StageVertex | MTL::StageFragment)); MTL::RenderStages render_before = static_cast(before_stages & (MTL::StageVertex | MTL::StageFragment)); if (render_after != 0 && render_before != 0) { render.encoder->memoryBarrier(MTL::BarrierScopeBuffers | MTL::BarrierScopeTextures, render_after, render_before); } } else if (compute.encoder.get() != nullptr) { if (after_stages & MTL::StageDispatch) { compute.encoder->memoryBarrier(MTL::BarrierScopeBuffers | MTL::BarrierScopeTextures); } } // Blit encoder has no memory barrier API. // Also cache for inter-pass barriers based on DESTINATION stages, // since barrierAfterQueueStages is called on the encoder that must wait. if (before_stages & (MTL::StageVertex | MTL::StageFragment)) { pending_after_stages[STAGE_RENDER] |= after_stages; pending_before_queue_stages[STAGE_RENDER] |= before_stages; } if (before_stages & MTL::StageDispatch) { pending_after_stages[STAGE_COMPUTE] |= after_stages; pending_before_queue_stages[STAGE_COMPUTE] |= before_stages; } if (before_stages & MTL::StageBlit) { pending_after_stages[STAGE_BLIT] |= after_stages; pending_before_queue_stages[STAGE_BLIT] |= before_stages; } } void MDCommandBuffer::bind_pipeline(RDD::PipelineID p_pipeline) { MDPipeline *p = (MDPipeline *)(p_pipeline.id); // End current encoder if it is a compute encoder or blit encoder, // as they do not have a defined end boundary in the RDD like render. if (type == MDCommandBufferStateType::Compute) { _end_compute_dispatch(); } else if (type == MDCommandBufferStateType::Blit) { _end_blit(); } if (p->type == MDPipelineType::Render) { DEV_ASSERT(type == MDCommandBufferStateType::Render); MDRenderPipeline *rp = (MDRenderPipeline *)p; if (render.encoder.get() == nullptr) { // This error would happen if the render pass failed. ERR_FAIL_NULL_MSG(render.desc.get(), "Render pass descriptor is null."); // This condition occurs when there are no attachments when calling render_next_subpass() // and is due to the SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS flag. render.desc->setDefaultRasterSampleCount(static_cast(rp->sample_count)); render.encoder = NS::RetainPtr(command_buffer()->renderCommandEncoder(render.desc.get())); _encode_barrier(render.encoder.get()); } if (render.pipeline != rp) { render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_RASTER)); // Mark all uniforms as dirty, as variants of a shader pipeline may have a different entry point ABI, // due to setting force_active_argument_buffer_resources = true for spirv_cross::CompilerMSL::Options. // As a result, uniform sets with the same layout will generate redundant binding warnings when // capturing a Metal frame in Xcode. // // If we don't mark as dirty, then some bindings will generate a validation error. // binding_cache.clear(); render.mark_uniforms_dirty(); if (render.pipeline != nullptr && render.pipeline->depth_stencil != rp->depth_stencil) { render.dirty.set_flag(RenderState::DIRTY_DEPTH); } if (rp->raster_state.blend.enabled) { render.dirty.set_flag(RenderState::DIRTY_BLEND); } render.pipeline = rp; } } else if (p->type == MDPipelineType::Compute) { DEV_ASSERT(type == MDCommandBufferStateType::None); type = MDCommandBufferStateType::Compute; if (compute.pipeline != p) { compute.dirty.set_flag(ComputeState::DIRTY_PIPELINE); binding_cache.clear(); compute.mark_uniforms_dirty(); compute.pipeline = (MDComputePipeline *)p; } } } void MDCommandBuffer::mark_push_constants_dirty() { switch (type) { case MDCommandBufferStateType::Render: render.dirty.set_flag(RenderState::DirtyFlag::DIRTY_PUSH); break; case MDCommandBufferStateType::Compute: compute.dirty.set_flag(ComputeState::DirtyFlag::DIRTY_PUSH); break; default: break; } } MTL::BlitCommandEncoder *MDCommandBuffer::_ensure_blit_encoder() { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: return blit.encoder.get(); } type = MDCommandBufferStateType::Blit; blit.encoder = NS::RetainPtr(command_buffer()->blitCommandEncoder()); _encode_barrier(blit.encoder.get()); return blit.encoder.get(); } void MDCommandBuffer::resolve_texture(RDD::TextureID p_src_texture, RDD::TextureLayout p_src_texture_layout, uint32_t p_src_layer, uint32_t p_src_mipmap, RDD::TextureID p_dst_texture, RDD::TextureLayout p_dst_texture_layout, uint32_t p_dst_layer, uint32_t p_dst_mipmap) { MTL::Texture *src_tex = rid::get(p_src_texture); MTL::Texture *dst_tex = rid::get(p_dst_texture); NS::SharedPtr mtlRPD = NS::TransferPtr(MTL::RenderPassDescriptor::alloc()->init()); MTL::RenderPassColorAttachmentDescriptor *mtlColorAttDesc = mtlRPD->colorAttachments()->object(0); mtlColorAttDesc->setLoadAction(MTL::LoadActionLoad); mtlColorAttDesc->setStoreAction(MTL::StoreActionMultisampleResolve); mtlColorAttDesc->setTexture(src_tex); mtlColorAttDesc->setResolveTexture(dst_tex); mtlColorAttDesc->setLevel(p_src_mipmap); mtlColorAttDesc->setSlice(p_src_layer); mtlColorAttDesc->setResolveLevel(p_dst_mipmap); mtlColorAttDesc->setResolveSlice(p_dst_layer); MTL::RenderCommandEncoder *enc = get_new_render_encoder_with_descriptor(mtlRPD.get()); enc->setLabel(MTLSTR("Resolve Image")); enc->endEncoding(); } void MDCommandBuffer::clear_color_texture(RDD::TextureID p_texture, RDD::TextureLayout p_texture_layout, const Color &p_color, const RDD::TextureSubresourceRange &p_subresources) { MTL::Texture *src_tex = rid::get(p_texture); if (src_tex->parentTexture()) { // Clear via the parent texture rather than the view. src_tex = src_tex->parentTexture(); } PixelFormats &pf = device_driver->get_pixel_formats(); if (pf.isDepthFormat(src_tex->pixelFormat()) || pf.isStencilFormat(src_tex->pixelFormat())) { ERR_FAIL_MSG("invalid: depth or stencil texture format"); } NS::SharedPtr desc = NS::TransferPtr(MTL::RenderPassDescriptor::alloc()->init()); if (p_subresources.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { MTL::RenderPassColorAttachmentDescriptor *caDesc = desc->colorAttachments()->object(0); caDesc->setTexture(src_tex); caDesc->setLoadAction(MTL::LoadActionClear); caDesc->setStoreAction(MTL::StoreActionStore); caDesc->setClearColor(MTL::ClearColor(p_color.r, p_color.g, p_color.b, p_color.a)); // Extract the mipmap levels that are to be updated. uint32_t mipLvlStart = p_subresources.base_mipmap; uint32_t mipLvlCnt = p_subresources.mipmap_count; uint32_t mipLvlEnd = mipLvlStart + mipLvlCnt; uint32_t levelCount = src_tex->mipmapLevelCount(); // Extract the cube or array layers (slices) that are to be updated. bool is3D = src_tex->textureType() == MTL::TextureType3D; uint32_t layerStart = is3D ? 0 : p_subresources.base_layer; uint32_t layerCnt = p_subresources.layer_count; uint32_t layerEnd = layerStart + layerCnt; MetalFeatures const &features = device_driver->get_device_properties().features; // Iterate across mipmap levels and layers, and perform and empty render to clear each. for (uint32_t mipLvl = mipLvlStart; mipLvl < mipLvlEnd; mipLvl++) { ERR_FAIL_INDEX_MSG(mipLvl, levelCount, "mip level out of range"); caDesc->setLevel(mipLvl); // If a 3D image, we need to get the depth for each level. if (is3D) { layerCnt = mipmapLevelSizeFromTexture(src_tex, mipLvl).depth; layerEnd = layerStart + layerCnt; } if ((features.layeredRendering && src_tex->sampleCount() == 1) || features.multisampleLayeredRendering) { // We can clear all layers at once. if (is3D) { caDesc->setDepthPlane(layerStart); } else { caDesc->setSlice(layerStart); } desc->setRenderTargetArrayLength(layerCnt); MTL::RenderCommandEncoder *enc = get_new_render_encoder_with_descriptor(desc.get()); enc->setLabel(MTLSTR("Clear Image")); enc->endEncoding(); } else { for (uint32_t layer = layerStart; layer < layerEnd; layer++) { if (is3D) { caDesc->setDepthPlane(layer); } else { caDesc->setSlice(layer); } MTL::RenderCommandEncoder *enc = get_new_render_encoder_with_descriptor(desc.get()); enc->setLabel(MTLSTR("Clear Image")); enc->endEncoding(); } } } } } void MDCommandBuffer::clear_buffer(RDD::BufferID p_buffer, uint64_t p_offset, uint64_t p_size) { MTL::BlitCommandEncoder *blit_enc = _ensure_blit_encoder(); const RDM::BufferInfo *buffer = (const RDM::BufferInfo *)p_buffer.id; blit_enc->fillBuffer(buffer->metal_buffer.get(), NS::Range(p_offset, p_size), 0); } void MDCommandBuffer::clear_depth_stencil_texture(RDD::TextureID p_texture, RDD::TextureLayout p_texture_layout, float p_depth, uint8_t p_stencil, const RDD::TextureSubresourceRange &p_subresources) { MTL::Texture *src_tex = rid::get(p_texture); if (src_tex->parentTexture()) { // Clear via the parent texture rather than the view. src_tex = src_tex->parentTexture(); } PixelFormats &pf = device_driver->get_pixel_formats(); bool is_depth_format = pf.isDepthFormat(src_tex->pixelFormat()); bool is_stencil_format = pf.isStencilFormat(src_tex->pixelFormat()); if (!is_depth_format && !is_stencil_format) { ERR_FAIL_MSG("invalid: color texture format"); } bool clear_depth = is_depth_format && p_subresources.aspect.has_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); bool clear_stencil = is_stencil_format && p_subresources.aspect.has_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); if (clear_depth || clear_stencil) { NS::SharedPtr desc = NS::TransferPtr(MTL::RenderPassDescriptor::alloc()->init()); MTL::RenderPassDepthAttachmentDescriptor *daDesc = desc->depthAttachment(); if (clear_depth) { daDesc->setTexture(src_tex); daDesc->setLoadAction(MTL::LoadActionClear); daDesc->setStoreAction(MTL::StoreActionStore); daDesc->setClearDepth(p_depth); } MTL::RenderPassStencilAttachmentDescriptor *saDesc = desc->stencilAttachment(); if (clear_stencil) { saDesc->setTexture(src_tex); saDesc->setLoadAction(MTL::LoadActionClear); saDesc->setStoreAction(MTL::StoreActionStore); saDesc->setClearStencil(p_stencil); } // Extract the mipmap levels that are to be updated. uint32_t mipLvlStart = p_subresources.base_mipmap; uint32_t mipLvlCnt = p_subresources.mipmap_count; uint32_t mipLvlEnd = mipLvlStart + mipLvlCnt; uint32_t levelCount = src_tex->mipmapLevelCount(); // Extract the cube or array layers (slices) that are to be updated. bool is3D = src_tex->textureType() == MTL::TextureType3D; uint32_t layerStart = is3D ? 0 : p_subresources.base_layer; uint32_t layerCnt = p_subresources.layer_count; uint32_t layerEnd = layerStart + layerCnt; MetalFeatures const &features = device_driver->get_device_properties().features; // Iterate across mipmap levels and layers, and perform and empty render to clear each. for (uint32_t mipLvl = mipLvlStart; mipLvl < mipLvlEnd; mipLvl++) { ERR_FAIL_INDEX_MSG(mipLvl, levelCount, "mip level out of range"); if (clear_depth) { daDesc->setLevel(mipLvl); } if (clear_stencil) { saDesc->setLevel(mipLvl); } // If a 3D image, we need to get the depth for each level. if (is3D) { layerCnt = mipmapLevelSizeFromTexture(src_tex, mipLvl).depth; layerEnd = layerStart + layerCnt; } if ((features.layeredRendering && src_tex->sampleCount() == 1) || features.multisampleLayeredRendering) { // We can clear all layers at once. if (is3D) { if (clear_depth) { daDesc->setDepthPlane(layerStart); } if (clear_stencil) { saDesc->setDepthPlane(layerStart); } } else { if (clear_depth) { daDesc->setSlice(layerStart); } if (clear_stencil) { saDesc->setSlice(layerStart); } } desc->setRenderTargetArrayLength(layerCnt); MTL::RenderCommandEncoder *enc = get_new_render_encoder_with_descriptor(desc.get()); enc->setLabel(MTLSTR("Clear Image")); enc->endEncoding(); } else { for (uint32_t layer = layerStart; layer < layerEnd; layer++) { if (is3D) { if (clear_depth) { daDesc->setDepthPlane(layer); } if (clear_stencil) { saDesc->setDepthPlane(layer); } } else { if (clear_depth) { daDesc->setSlice(layer); } if (clear_stencil) { saDesc->setSlice(layer); } } MTL::RenderCommandEncoder *enc = get_new_render_encoder_with_descriptor(desc.get()); enc->setLabel(MTLSTR("Clear Image")); enc->endEncoding(); } } } } } void MDCommandBuffer::copy_buffer(RDD::BufferID p_src_buffer, RDD::BufferID p_dst_buffer, VectorView p_regions) { const RDM::BufferInfo *src = (const RDM::BufferInfo *)p_src_buffer.id; const RDM::BufferInfo *dst = (const RDM::BufferInfo *)p_dst_buffer.id; MTL::BlitCommandEncoder *enc = _ensure_blit_encoder(); for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::BufferCopyRegion region = p_regions[i]; enc->copyFromBuffer(src->metal_buffer.get(), region.src_offset, dst->metal_buffer.get(), region.dst_offset, region.size); } } void MDCommandBuffer::copy_texture(RDD::TextureID p_src_texture, RDD::TextureID p_dst_texture, VectorView p_regions) { MTL::Texture *src = rid::get(p_src_texture); MTL::Texture *dst = rid::get(p_dst_texture); MTL::BlitCommandEncoder *enc = _ensure_blit_encoder(); PixelFormats &pf = device_driver->get_pixel_formats(); MTL::PixelFormat src_fmt = src->pixelFormat(); bool src_is_compressed = pf.getFormatType(src_fmt) == MTLFormatType::Compressed; MTL::PixelFormat dst_fmt = dst->pixelFormat(); bool dst_is_compressed = pf.getFormatType(dst_fmt) == MTLFormatType::Compressed; // Validate copy. if (src->sampleCount() != dst->sampleCount() || pf.getBytesPerBlock(src_fmt) != pf.getBytesPerBlock(dst_fmt)) { ERR_FAIL_MSG("Cannot copy between incompatible pixel formats, such as formats of different pixel sizes, or between images with different sample counts."); } // If source and destination have different formats and at least one is compressed, a temporary buffer is required. bool need_tmp_buffer = (src_fmt != dst_fmt) && (src_is_compressed || dst_is_compressed); if (need_tmp_buffer) { ERR_FAIL_MSG("not implemented: copy with intermediate buffer"); } if (src_fmt != dst_fmt) { // Map the source pixel format to the dst through a texture view on the source texture. src = src->newTextureView(dst_fmt); } for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::TextureCopyRegion region = p_regions[i]; MTL::Size extent = MTLSizeFromVector3i(region.size); // If copies can be performed using direct texture-texture copying, do so. uint32_t src_level = region.src_subresources.mipmap; uint32_t src_base_layer = region.src_subresources.base_layer; MTL::Size src_extent = mipmapLevelSizeFromTexture(src, src_level); uint32_t dst_level = region.dst_subresources.mipmap; uint32_t dst_base_layer = region.dst_subresources.base_layer; MTL::Size dst_extent = mipmapLevelSizeFromTexture(dst, dst_level); // All layers may be copied at once, if the extent completely covers both images. if (src_extent == extent && dst_extent == extent) { enc->copyFromTexture(src, src_base_layer, src_level, dst, dst_base_layer, dst_level, region.src_subresources.layer_count, 1); } else { MTL::Origin src_origin = MTLOriginFromVector3i(region.src_offset); MTL::Size src_size = clampMTLSize(extent, src_origin, src_extent); uint32_t layer_count = 0; if ((src->textureType() == MTL::TextureType3D) != (dst->textureType() == MTL::TextureType3D)) { // In the case, the number of layers to copy is in extent.depth. Use that value, // then clamp the depth, so we don't try to copy more than Metal will allow. layer_count = extent.depth; src_size.depth = 1; } else { layer_count = region.src_subresources.layer_count; } MTL::Origin dst_origin = MTLOriginFromVector3i(region.dst_offset); for (uint32_t layer = 0; layer < layer_count; layer++) { // We can copy between a 3D and a 2D image easily. Just copy between // one slice of the 2D image and one plane of the 3D image at a time. if ((src->textureType() == MTL::TextureType3D) == (dst->textureType() == MTL::TextureType3D)) { enc->copyFromTexture(src, src_base_layer + layer, src_level, src_origin, src_size, dst, dst_base_layer + layer, dst_level, dst_origin); } else if (src->textureType() == MTL::TextureType3D) { enc->copyFromTexture(src, src_base_layer, src_level, MTL::Origin(src_origin.x, src_origin.y, src_origin.z + layer), src_size, dst, dst_base_layer + layer, dst_level, dst_origin); } else { DEV_ASSERT(dst->textureType() == MTL::TextureType3D); enc->copyFromTexture(src, src_base_layer + layer, src_level, src_origin, src_size, dst, dst_base_layer, dst_level, MTL::Origin(dst_origin.x, dst_origin.y, dst_origin.z + layer)); } } } } } void MDCommandBuffer::copy_buffer_to_texture(RDD::BufferID p_src_buffer, RDD::TextureID p_dst_texture, VectorView p_regions) { _copy_texture_buffer(CopySource::Buffer, p_dst_texture, p_src_buffer, p_regions); } void MDCommandBuffer::copy_texture_to_buffer(RDD::TextureID p_src_texture, RDD::BufferID p_dst_buffer, VectorView p_regions) { _copy_texture_buffer(CopySource::Texture, p_src_texture, p_dst_buffer, p_regions); } void MDCommandBuffer::_copy_texture_buffer(CopySource p_source, RDD::TextureID p_texture, RDD::BufferID p_buffer, VectorView p_regions) { const RDM::BufferInfo *buffer = (const RDM::BufferInfo *)p_buffer.id; MTL::Texture *texture = rid::get(p_texture); MTL::BlitCommandEncoder *enc = _ensure_blit_encoder(); PixelFormats &pf = device_driver->get_pixel_formats(); MTL::PixelFormat mtlPixFmt = texture->pixelFormat(); MTL::BlitOption options = MTL::BlitOptionNone; if (pf.isPVRTCFormat(mtlPixFmt)) { options |= MTL::BlitOptionRowLinearPVRTC; } for (uint32_t i = 0; i < p_regions.size(); i++) { RDD::BufferTextureCopyRegion region = p_regions[i]; uint32_t mip_level = region.texture_subresource.mipmap; MTL::Origin txt_origin = MTL::Origin(region.texture_offset.x, region.texture_offset.y, region.texture_offset.z); MTL::Size src_extent = mipmapLevelSizeFromTexture(texture, mip_level); MTL::Size txt_size = clampMTLSize(MTL::Size(region.texture_region_size.x, region.texture_region_size.y, region.texture_region_size.z), txt_origin, src_extent); uint32_t buffImgWd = region.texture_region_size.x; uint32_t buffImgHt = region.texture_region_size.y; NS::UInteger bytesPerRow = pf.getBytesPerRow(mtlPixFmt, buffImgWd); NS::UInteger bytesPerImg = pf.getBytesPerLayer(mtlPixFmt, bytesPerRow, buffImgHt); MTL::BlitOption blit_options = options; if (pf.isDepthFormat(mtlPixFmt) && pf.isStencilFormat(mtlPixFmt)) { // Don't reduce depths of 32-bit depth/stencil formats. if (region.texture_subresource.aspect == RDD::TEXTURE_ASPECT_DEPTH) { if (pf.getBytesPerTexel(mtlPixFmt) != 4) { bytesPerRow -= buffImgWd; bytesPerImg -= buffImgWd * buffImgHt; } blit_options |= MTL::BlitOptionDepthFromDepthStencil; } else if (region.texture_subresource.aspect == RDD::TEXTURE_ASPECT_STENCIL) { // The stencil component is always 1 byte per pixel. bytesPerRow = buffImgWd; bytesPerImg = buffImgWd * buffImgHt; blit_options |= MTL::BlitOptionStencilFromDepthStencil; } } if (!isArrayTexture(texture->textureType())) { bytesPerImg = 0; } if (p_source == CopySource::Buffer) { enc->copyFromBuffer(buffer->metal_buffer.get(), region.buffer_offset, bytesPerRow, bytesPerImg, txt_size, texture, region.texture_subresource.layer, mip_level, txt_origin, blit_options); } else { enc->copyFromTexture(texture, region.texture_subresource.layer, mip_level, txt_origin, txt_size, buffer->metal_buffer.get(), region.buffer_offset, bytesPerRow, bytesPerImg, blit_options); } } } MTL::RenderCommandEncoder *MDCommandBuffer::get_new_render_encoder_with_descriptor(MTL::RenderPassDescriptor *p_desc) { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: _end_blit(); break; } MTL::RenderCommandEncoder *enc = command_buffer()->renderCommandEncoder(p_desc); _encode_barrier(enc); return enc; } #pragma mark - Render Commands void MDCommandBuffer::render_bind_uniform_sets(VectorView p_uniform_sets, RDD::ShaderID p_shader, uint32_t p_first_set_index, uint32_t p_set_count, uint32_t p_dynamic_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (uint32_t new_size = p_first_set_index + p_set_count; render.uniform_sets.size() < new_size) { uint32_t s = render.uniform_sets.size(); render.uniform_sets.resize(new_size); // Set intermediate values to null. std::fill(&render.uniform_sets[s], render.uniform_sets.end().operator->(), nullptr); } const MDShader *shader = (const MDShader *)p_shader.id; DynamicOffsetLayout layout = shader->dynamic_offset_layout; // Clear bits for sets being bound, then OR new values. for (uint32_t i = 0; i < p_set_count && render.dynamic_offsets != 0; i++) { uint32_t set_index = p_first_set_index + i; uint32_t count = layout.get_count(set_index); if (count > 0) { uint32_t shift = layout.get_offset_index_shift(set_index); uint32_t mask = ((1u << (count * 4u)) - 1u) << shift; render.dynamic_offsets &= ~mask; // Clear this set's bits } } render.dynamic_offsets |= p_dynamic_offsets; for (size_t i = 0; i < p_set_count; ++i) { MDUniformSet *set = (MDUniformSet *)(p_uniform_sets[i].id); uint32_t index = p_first_set_index + i; if (render.uniform_sets[index] != set || layout.get_count(index) > 0) { render.dirty.set_flag(RenderState::DIRTY_UNIFORMS); render.uniform_set_mask |= 1ULL << index; render.uniform_sets[index] = set; } } } void MDCommandBuffer::render_clear_attachments(VectorView p_attachment_clears, VectorView p_rects) { DEV_ASSERT(type == MDCommandBufferStateType::Render); const MDSubpass &subpass = render.get_subpass(); uint32_t vertex_count = p_rects.size() * 6 * subpass.view_count; simd::float4 *vertices = ALLOCA_ARRAY(simd::float4, vertex_count); simd::float4 clear_colors[ClearAttKey::ATTACHMENT_COUNT]; Size2i size = render.frameBuffer->size; Rect2i render_area = render.clip_to_render_area({ { 0, 0 }, size }); size = Size2i(render_area.position.x + render_area.size.width, render_area.position.y + render_area.size.height); _populate_vertices(vertices, size, p_rects); ClearAttKey key; key.sample_count = render.pass->get_sample_count(); if (subpass.view_count > 1) { key.enable_layered_rendering(); } float depth_value = 0; uint32_t stencil_value = 0; for (uint32_t i = 0; i < p_attachment_clears.size(); i++) { RDD::AttachmentClear const &attClear = p_attachment_clears[i]; uint32_t attachment_index; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { attachment_index = attClear.color_attachment; } else { attachment_index = subpass.depth_stencil_reference.attachment; } MDAttachment const &mda = render.pass->attachments[attachment_index]; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { key.set_color_format(attachment_index, mda.format); clear_colors[attachment_index] = { attClear.value.color.r, attClear.value.color.g, attClear.value.color.b, attClear.value.color.a }; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT)) { key.set_depth_format(mda.format); depth_value = attClear.value.depth; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT)) { key.set_stencil_format(mda.format); stencil_value = attClear.value.stencil; } } clear_colors[ClearAttKey::DEPTH_INDEX] = { depth_value, depth_value, depth_value, depth_value }; MTL::RenderCommandEncoder *enc = render.encoder.get(); MDResourceCache &cache = device_driver->get_resource_cache(); enc->pushDebugGroup(MTLSTR("ClearAttachments")); enc->setRenderPipelineState(cache.get_clear_render_pipeline_state(key, nullptr)); enc->setDepthStencilState(cache.get_depth_stencil_state( key.is_depth_enabled(), key.is_stencil_enabled())); enc->setStencilReferenceValue(stencil_value); enc->setCullMode(MTL::CullModeNone); enc->setTriangleFillMode(MTL::TriangleFillModeFill); enc->setDepthBias(0, 0, 0); enc->setViewport(MTL::Viewport{ 0, 0, (double)size.width, (double)size.height, 0.0, 1.0 }); enc->setScissorRect(MTL::ScissorRect{ 0, 0, (NS::UInteger)size.width, (NS::UInteger)size.height }); enc->setVertexBytes(clear_colors, sizeof(clear_colors), 0); enc->setFragmentBytes(clear_colors, sizeof(clear_colors), 0); enc->setVertexBytes(vertices, vertex_count * sizeof(vertices[0]), device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX)); enc->drawPrimitives(MTL::PrimitiveTypeTriangle, (NS::UInteger)0, vertex_count); enc->popDebugGroup(); render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_DEPTH | RenderState::DIRTY_RASTER)); binding_cache.clear(); render.mark_uniforms_dirty({ 0 }); // Mark index 0 dirty, if there is already a binding for index 0. render.mark_viewport_dirty(); render.mark_scissors_dirty(); render.mark_vertex_dirty(); render.mark_blend_dirty(); } void MDCommandBuffer::_render_set_dirty_state() { _render_bind_uniform_sets(); if (render.dirty.has_flag(RenderState::DIRTY_PUSH)) { if (push_constant_binding != UINT32_MAX) { render.encoder->setVertexBytes(push_constant_data, push_constant_data_len, push_constant_binding); render.encoder->setFragmentBytes(push_constant_data, push_constant_data_len, push_constant_binding); } } MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { uint32_t view_range[2] = { 0, subpass.view_count }; render.encoder->setVertexBytes(view_range, sizeof(view_range), VIEW_MASK_BUFFER_INDEX); render.encoder->setFragmentBytes(view_range, sizeof(view_range), VIEW_MASK_BUFFER_INDEX); } if (render.dirty.has_flag(RenderState::DIRTY_PIPELINE)) { render.encoder->setRenderPipelineState(render.pipeline->state.get()); } if (render.dirty.has_flag(RenderState::DIRTY_VIEWPORT)) { render.encoder->setViewports(reinterpret_cast(render.viewports.ptr()), render.viewports.size()); } if (render.dirty.has_flag(RenderState::DIRTY_DEPTH)) { render.encoder->setDepthStencilState(render.pipeline->depth_stencil.get()); } if (render.dirty.has_flag(RenderState::DIRTY_RASTER)) { render.pipeline->raster_state.apply(render.encoder.get()); } if (render.dirty.has_flag(RenderState::DIRTY_SCISSOR) && !render.scissors.is_empty()) { size_t len = render.scissors.size(); MTL::ScissorRect *rects = ALLOCA_ARRAY(MTL::ScissorRect, len); for (size_t i = 0; i < len; i++) { rects[i] = render.clip_to_render_area(render.scissors[i]); } render.encoder->setScissorRects(rects, len); } if (render.dirty.has_flag(RenderState::DIRTY_BLEND) && render.blend_constants.has_value()) { render.encoder->setBlendColor(render.blend_constants->r, render.blend_constants->g, render.blend_constants->b, render.blend_constants->a); } if (render.dirty.has_flag(RenderState::DIRTY_VERTEX)) { uint32_t p_binding_count = render.vertex_buffers.size(); if (p_binding_count > 0) { uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); render.encoder->setVertexBuffers(render.vertex_buffers.ptr(), render.vertex_offsets.ptr(), NS::Range(first, p_binding_count)); } } if (!use_barriers) { render.resource_tracker.encode(render.encoder.get()); } render.dirty.clear(); } void ResourceTracker::merge_from(const ::ResourceUsageMap &p_from) { for (KeyValue const &keyval : p_from) { ResourceVector *resources = _current.getptr(keyval.key); if (resources == nullptr) { resources = &_current.insert(keyval.key, ResourceVector())->value; } resources->reserve(resources->size() + keyval.value.size()); MTL::Resource *const *keyval_ptr = (MTL::Resource *const *)(void *)keyval.value.ptr(); // Helper to check if a resource needs to be added based on previous usage. auto should_add_resource = [this, usage = keyval.key](MTL::Resource *res) -> bool { ResourceUsageEntry *existing = _previous.getptr(res); if (existing == nullptr) { _previous.insert(res, usage); return true; } if (existing->usage != usage) { existing->usage |= usage; return true; } return false; }; // 2-way merge of sorted resource lists. uint32_t i = 0, j = 0; while (i < resources->size() && j < keyval.value.size()) { MTL::Resource *current_res = resources->ptr()[i]; MTL::Resource *new_res = keyval_ptr[j]; if (current_res < new_res) { i++; } else if (current_res > new_res) { if (should_add_resource(new_res)) { resources->insert(i, new_res); } i++; j++; } else { i++; j++; } } // Append any remaining resources from the input. for (; j < keyval.value.size(); j++) { if (should_add_resource(keyval_ptr[j])) { resources->push_back(keyval_ptr[j]); } } } } void ResourceTracker::encode(MTL::RenderCommandEncoder *p_enc) { for (KeyValue const &keyval : _current) { if (keyval.value.is_empty()) { continue; } MTL::ResourceUsage vert_usage = (MTL::ResourceUsage)resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_VERTEX); MTL::ResourceUsage frag_usage = (MTL::ResourceUsage)resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_FRAGMENT); const MTL::Resource **resources = (const MTL::Resource **)(void *)keyval.value.ptr(); NS::UInteger count = keyval.value.size(); if (vert_usage == frag_usage) { p_enc->useResources(resources, count, vert_usage, MTL::RenderStageVertex | MTL::RenderStageFragment); } else { if (vert_usage != 0) { p_enc->useResources(resources, count, vert_usage, MTL::RenderStageVertex); } if (frag_usage != 0) { p_enc->useResources(resources, count, frag_usage, MTL::RenderStageFragment); } } } // Keep the keys for now and clear the vectors to reduce churn. for (KeyValue &v : _current) { v.value.clear(); } } void ResourceTracker::encode(MTL::ComputeCommandEncoder *p_enc) { for (KeyValue const &keyval : _current) { if (keyval.value.is_empty()) { continue; } MTL::ResourceUsage usage = (MTL::ResourceUsage)resource_usage_for_stage(keyval.key, RDD::ShaderStage::SHADER_STAGE_COMPUTE); if (usage != 0) { const MTL::Resource **resources = (const MTL::Resource **)(void *)keyval.value.ptr(); p_enc->useResources(resources, keyval.value.size(), usage); } } // Keep the keys for now and clear the vectors to reduce churn. for (KeyValue &v : _current) { v.value.clear(); } } void ResourceTracker::reset() { // Keep the keys for now, as they are likely to be used repeatedly. for (KeyValue &v : _previous) { if (v.value.usage == ResourceUnused) { v.value.unused++; if (v.value.unused >= RESOURCE_UNUSED_CLEANUP_COUNT) { _scratch.push_back(v.key); } } else { v.value = ResourceUnused; v.value.unused = 0; } } // Clear up resources that weren't used for the last pass. for (MTL::Resource *res : _scratch) { _previous.erase(res); } _scratch.clear(); } void MDCommandBuffer::_render_bind_uniform_sets() { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (!render.dirty.has_flag(RenderState::DIRTY_UNIFORMS)) { return; } render.dirty.clear_flag(RenderState::DIRTY_UNIFORMS); uint64_t set_uniforms = render.uniform_set_mask; render.uniform_set_mask = 0; MDRenderShader *shader = render.pipeline->shader; const uint32_t dynamic_offsets = render.dynamic_offsets; while (set_uniforms != 0) { // Find the index of the next set bit. uint32_t index = (uint32_t)__builtin_ctzll(set_uniforms); // Clear the set bit. set_uniforms &= (set_uniforms - 1); MDUniformSet *set = render.uniform_sets[index]; if (set == nullptr || index >= (uint32_t)shader->sets.size()) { continue; } if (shader->uses_argument_buffers) { _bind_uniforms_argument_buffers(set, shader, index, dynamic_offsets); } else { DirectEncoder de(render.encoder.get(), binding_cache, DirectEncoder::RENDER); _bind_uniforms_direct(set, shader, de, index, dynamic_offsets); } } } void MDCommandBuffer::render_begin_pass(RDD::RenderPassID p_render_pass, RDD::FramebufferID p_frameBuffer, RDD::CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView p_clear_values) { DEV_ASSERT(command_buffer() != nullptr); end(); MDRenderPass *pass = (MDRenderPass *)(p_render_pass.id); MDFrameBuffer *fb = (MDFrameBuffer *)(p_frameBuffer.id); type = MDCommandBufferStateType::Render; render.pass = pass; render.current_subpass = UINT32_MAX; render.render_area = p_rect; render.clear_values.resize(p_clear_values.size()); for (uint32_t i = 0; i < p_clear_values.size(); i++) { render.clear_values[i] = p_clear_values[i]; } render.is_rendering_entire_area = (p_rect.position == Point2i(0, 0)) && p_rect.size == fb->size; render.frameBuffer = fb; render_next_subpass(); } void MDCommandBuffer::render_next_subpass() { DEV_ASSERT(command_buffer() != nullptr); if (render.current_subpass == UINT32_MAX) { render.current_subpass = 0; } else { _end_render_pass(); render.current_subpass++; } MDFrameBuffer const &fb = *render.frameBuffer; MDRenderPass const &pass = *render.pass; MDSubpass const &subpass = render.get_subpass(); NS::SharedPtr desc = NS::TransferPtr(MTL::RenderPassDescriptor::alloc()->init()); if (subpass.view_count > 1) { desc->setRenderTargetArrayLength(subpass.view_count); } PixelFormats &pf = device_driver->get_pixel_formats(); uint32_t attachmentCount = 0; for (uint32_t i = 0; i < subpass.color_references.size(); i++) { uint32_t idx = subpass.color_references[i].attachment; if (idx == RDD::AttachmentReference::UNUSED) { continue; } attachmentCount += 1; MTL::RenderPassColorAttachmentDescriptor *ca = desc->colorAttachments()->object(i); uint32_t resolveIdx = subpass.resolve_references.is_empty() ? RDD::AttachmentReference::UNUSED : subpass.resolve_references[i].attachment; bool has_resolve = resolveIdx != RDD::AttachmentReference::UNUSED; bool can_resolve = true; if (resolveIdx != RDD::AttachmentReference::UNUSED) { MTL::Texture *resolve_tex = fb.get_texture(resolveIdx); can_resolve = flags::all(pf.getCapabilities(resolve_tex->pixelFormat()), kMTLFmtCapsResolve); if (can_resolve) { ca->setResolveTexture(resolve_tex); } else { CRASH_NOW_MSG("unimplemented: using a texture format that is not supported for resolve"); } } MDAttachment const &attachment = pass.attachments[idx]; MTL::Texture *tex = fb.get_texture(idx); ERR_FAIL_NULL_MSG(tex, "Frame buffer color texture is null."); if ((attachment.type & MDAttachmentType::Color)) { if (attachment.configureDescriptor(ca, pf, subpass, tex, render.is_rendering_entire_area, has_resolve, can_resolve, false)) { Color clearColor = render.clear_values[idx].color; ca->setClearColor(MTL::ClearColor(clearColor.r, clearColor.g, clearColor.b, clearColor.a)); } } } if (subpass.depth_stencil_reference.attachment != RDD::AttachmentReference::UNUSED) { attachmentCount += 1; uint32_t idx = subpass.depth_stencil_reference.attachment; MDAttachment const &attachment = pass.attachments[idx]; MTL::Texture *tex = fb.get_texture(idx); ERR_FAIL_NULL_MSG(tex, "Frame buffer depth / stencil texture is null."); if (attachment.type & MDAttachmentType::Depth) { MTL::RenderPassDepthAttachmentDescriptor *da = desc->depthAttachment(); if (attachment.configureDescriptor(da, pf, subpass, tex, render.is_rendering_entire_area, false, false, false)) { da->setClearDepth(render.clear_values[idx].depth); } } if (attachment.type & MDAttachmentType::Stencil) { MTL::RenderPassStencilAttachmentDescriptor *sa = desc->stencilAttachment(); if (attachment.configureDescriptor(sa, pf, subpass, tex, render.is_rendering_entire_area, false, false, true)) { sa->setClearStencil(render.clear_values[idx].stencil); } } } desc->setRenderTargetWidth(MAX((NS::UInteger)MIN(render.render_area.position.x + render.render_area.size.width, fb.size.width), 1u)); desc->setRenderTargetHeight(MAX((NS::UInteger)MIN(render.render_area.position.y + render.render_area.size.height, fb.size.height), 1u)); if (attachmentCount == 0) { // If there are no attachments, delay the creation of the encoder, // so we can use a matching sample count for the pipeline, by setting // the defaultRasterSampleCount from the pipeline's sample count. render.desc = desc; } else { render.encoder = NS::RetainPtr(command_buffer()->renderCommandEncoder(desc.get())); _encode_barrier(render.encoder.get()); if (!render.is_rendering_entire_area) { _render_clear_render_area(); } // With a new encoder, all state is dirty. render.dirty.set_flag(RenderState::DIRTY_ALL); } } void MDCommandBuffer::render_draw(uint32_t p_vertex_count, uint32_t p_instance_count, uint32_t p_base_vertex, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { p_instance_count *= subpass.view_count; } DEV_ASSERT(render.dirty == 0); MTL::RenderCommandEncoder *enc = render.encoder.get(); enc->drawPrimitives(render.pipeline->raster_state.render_primitive, p_base_vertex, p_vertex_count, p_instance_count, p_first_instance); } void MDCommandBuffer::render_bind_vertex_buffers(uint32_t p_binding_count, const RDD::BufferID *p_buffers, const uint64_t *p_offsets, uint64_t p_dynamic_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.vertex_buffers.resize(p_binding_count); render.vertex_offsets.resize(p_binding_count); // Are the existing buffer bindings the same? bool same = true; // Reverse the buffers, as their bindings are assigned in descending order. for (uint32_t i = 0; i < p_binding_count; i += 1) { const RenderingDeviceDriverMetal::BufferInfo *buf_info = (const RenderingDeviceDriverMetal::BufferInfo *)p_buffers[p_binding_count - i - 1].id; NS::UInteger dynamic_offset = 0; if (buf_info->is_dynamic()) { const MetalBufferDynamicInfo *dyn_buf = (const MetalBufferDynamicInfo *)buf_info; uint64_t frame_idx = p_dynamic_offsets & 0x3; p_dynamic_offsets >>= 2; dynamic_offset = frame_idx * dyn_buf->size_bytes; } if (render.vertex_buffers[i] != buf_info->metal_buffer.get()) { render.vertex_buffers[i] = buf_info->metal_buffer.get(); same = false; } render.vertex_offsets[i] = dynamic_offset + p_offsets[p_binding_count - i - 1]; } if (render.encoder.get() != nullptr) { uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); if (same) { NS::UInteger *offset_ptr = render.vertex_offsets.ptr(); for (uint32_t i = first; i < first + p_binding_count; i++) { render.encoder->setVertexBufferOffset(*offset_ptr, i); offset_ptr++; } } else { render.encoder->setVertexBuffers(render.vertex_buffers.ptr(), render.vertex_offsets.ptr(), NS::Range(first, p_binding_count)); } render.dirty.clear_flag(RenderState::DIRTY_VERTEX); } else { render.dirty.set_flag(RenderState::DIRTY_VERTEX); } } void MDCommandBuffer::render_bind_index_buffer(RDD::BufferID p_buffer, RDD::IndexBufferFormat p_format, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Render); const RenderingDeviceDriverMetal::BufferInfo *buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_buffer.id; render.index_buffer = buffer->metal_buffer.get(); render.index_type = p_format == RDD::IndexBufferFormat::INDEX_BUFFER_FORMAT_UINT16 ? MTL::IndexTypeUInt16 : MTL::IndexTypeUInt32; render.index_offset = p_offset; } void MDCommandBuffer::render_draw_indexed(uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index, int32_t p_vertex_offset, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MDSubpass const &subpass = render.get_subpass(); if (subpass.view_count > 1) { p_instance_count *= subpass.view_count; } MTL::RenderCommandEncoder *enc = render.encoder.get(); uint32_t index_offset = render.index_offset; index_offset += p_first_index * (render.index_type == MTL::IndexTypeUInt16 ? sizeof(uint16_t) : sizeof(uint32_t)); enc->drawIndexedPrimitives(render.pipeline->raster_state.render_primitive, p_index_count, render.index_type, render.index_buffer, index_offset, p_instance_count, p_vertex_offset, p_first_instance); } void MDCommandBuffer::render_draw_indexed_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MTL::RenderCommandEncoder *enc = render.encoder.get(); const RenderingDeviceDriverMetal::BufferInfo *indirect_buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; NS::UInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { enc->drawIndexedPrimitives(render.pipeline->raster_state.render_primitive, render.index_type, render.index_buffer, 0, indirect_buffer->metal_buffer.get(), indirect_offset); indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indexed_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_draw_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); ERR_FAIL_NULL_MSG(render.pipeline, "No pipeline set for render command buffer."); _render_set_dirty_state(); MTL::RenderCommandEncoder *enc = render.encoder.get(); const RenderingDeviceDriverMetal::BufferInfo *indirect_buffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; NS::UInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { enc->drawPrimitives(render.pipeline->raster_state.render_primitive, indirect_buffer->metal_buffer.get(), indirect_offset); indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_end_pass() { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.end_encoding(); render.reset(); reset(); } #pragma mark - RenderState void MDCommandBuffer::RenderState::reset() { pass = nullptr; frameBuffer = nullptr; pipeline = nullptr; current_subpass = UINT32_MAX; render_area = {}; is_rendering_entire_area = false; desc.reset(); encoder.reset(); index_buffer = nullptr; index_type = MTL::IndexTypeUInt16; dirty = DIRTY_NONE; uniform_sets.clear(); dynamic_offsets = 0; uniform_set_mask = 0; clear_values.clear(); viewports.clear(); scissors.clear(); blend_constants.reset(); bzero(vertex_buffers.ptr(), sizeof(MTL::Buffer *) * vertex_buffers.size()); vertex_buffers.clear(); bzero(vertex_offsets.ptr(), sizeof(NS::UInteger) * vertex_offsets.size()); vertex_offsets.clear(); resource_tracker.reset(); } void MDCommandBuffer::RenderState::end_encoding() { if (encoder.get() == nullptr) { return; } encoder->endEncoding(); encoder.reset(); } #pragma mark - ComputeState void MDCommandBuffer::ComputeState::end_encoding() { if (encoder.get() == nullptr) { return; } encoder->endEncoding(); encoder.reset(); } #pragma mark - Compute void MDCommandBuffer::_compute_set_dirty_state() { if (compute.dirty.has_flag(ComputeState::DIRTY_PIPELINE)) { compute.encoder = NS::RetainPtr(command_buffer()->computeCommandEncoder(MTL::DispatchTypeConcurrent)); _encode_barrier(compute.encoder.get()); compute.encoder->setComputePipelineState(compute.pipeline->state.get()); } _compute_bind_uniform_sets(); if (compute.dirty.has_flag(ComputeState::DIRTY_PUSH)) { if (push_constant_binding != UINT32_MAX) { compute.encoder->setBytes(push_constant_data, push_constant_data_len, push_constant_binding); } } if (!use_barriers) { compute.resource_tracker.encode(compute.encoder.get()); } compute.dirty.clear(); } void MDCommandBuffer::_compute_bind_uniform_sets() { DEV_ASSERT(type == MDCommandBufferStateType::Compute); if (!compute.dirty.has_flag(ComputeState::DIRTY_UNIFORMS)) { return; } compute.dirty.clear_flag(ComputeState::DIRTY_UNIFORMS); uint64_t set_uniforms = compute.uniform_set_mask; compute.uniform_set_mask = 0; MDComputeShader *shader = compute.pipeline->shader; const uint32_t dynamic_offsets = compute.dynamic_offsets; while (set_uniforms != 0) { // Find the index of the next set bit. uint32_t index = (uint32_t)__builtin_ctzll(set_uniforms); // Clear the set bit. set_uniforms &= (set_uniforms - 1); MDUniformSet *set = compute.uniform_sets[index]; if (set == nullptr || index >= (uint32_t)shader->sets.size()) { continue; } if (shader->uses_argument_buffers) { _bind_uniforms_argument_buffers_compute(set, shader, index, dynamic_offsets); } else { DirectEncoder de(compute.encoder.get(), binding_cache, DirectEncoder::COMPUTE); _bind_uniforms_direct(set, shader, de, index, dynamic_offsets); } } } void MDCommandBuffer::ComputeState::reset() { pipeline = nullptr; encoder.reset(); dirty = DIRTY_NONE; uniform_sets.clear(); dynamic_offsets = 0; uniform_set_mask = 0; resource_tracker.reset(); } void MDCommandBuffer::compute_bind_uniform_sets(VectorView p_uniform_sets, RDD::ShaderID p_shader, uint32_t p_first_set_index, uint32_t p_set_count, uint32_t p_dynamic_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); if (uint32_t new_size = p_first_set_index + p_set_count; compute.uniform_sets.size() < new_size) { uint32_t s = compute.uniform_sets.size(); compute.uniform_sets.resize(new_size); // Set intermediate values to null. std::fill(&compute.uniform_sets[s], compute.uniform_sets.end().operator->(), nullptr); } const MDShader *shader = (const MDShader *)p_shader.id; DynamicOffsetLayout layout = shader->dynamic_offset_layout; // Clear bits for sets being bound, then OR new values. for (uint32_t i = 0; i < p_set_count && compute.dynamic_offsets != 0; i++) { uint32_t set_index = p_first_set_index + i; uint32_t count = layout.get_count(set_index); if (count > 0) { uint32_t shift = layout.get_offset_index_shift(set_index); uint32_t mask = ((1u << (count * 4u)) - 1u) << shift; compute.dynamic_offsets &= ~mask; // Clear this set's bits } } compute.dynamic_offsets |= p_dynamic_offsets; for (size_t i = 0; i < p_set_count; ++i) { MDUniformSet *set = (MDUniformSet *)(p_uniform_sets[i].id); uint32_t index = p_first_set_index + i; if (compute.uniform_sets[index] != set || layout.get_count(index) > 0) { compute.dirty.set_flag(ComputeState::DIRTY_UNIFORMS); compute.uniform_set_mask |= 1ULL << index; compute.uniform_sets[index] = set; } } } void MDCommandBuffer::compute_dispatch(uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); _compute_set_dirty_state(); MTL::Size size = MTL::Size(p_x_groups, p_y_groups, p_z_groups); MTL::ComputeCommandEncoder *enc = compute.encoder.get(); enc->dispatchThreadgroups(size, compute.pipeline->compute_state.local); } void MDCommandBuffer::compute_dispatch_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); _compute_set_dirty_state(); const RenderingDeviceDriverMetal::BufferInfo *indirectBuffer = (const RenderingDeviceDriverMetal::BufferInfo *)p_indirect_buffer.id; MTL::ComputeCommandEncoder *enc = compute.encoder.get(); enc->dispatchThreadgroups(indirectBuffer->metal_buffer.get(), p_offset, compute.pipeline->compute_state.local); } void MDCommandBuffer::reset() { push_constant_binding = UINT32_MAX; push_constant_data_len = 0; type = MDCommandBufferStateType::None; binding_cache.clear(); } void MDCommandBuffer::_end_compute_dispatch() { DEV_ASSERT(type == MDCommandBufferStateType::Compute); compute.end_encoding(); compute.reset(); reset(); } void MDCommandBuffer::_end_blit() { DEV_ASSERT(type == MDCommandBufferStateType::Blit); blit.encoder->endEncoding(); blit.reset(); reset(); } MDComputeShader::MDComputeShader(CharString p_name, Vector p_sets, bool p_uses_argument_buffers, std::shared_ptr p_kernel) : MDShader(p_name, p_sets, p_uses_argument_buffers), kernel(std::move(p_kernel)) { } MDRenderShader::MDRenderShader(CharString p_name, Vector p_sets, bool p_needs_view_mask_buffer, bool p_uses_argument_buffers, std::shared_ptr p_vert, std::shared_ptr p_frag) : MDShader(p_name, p_sets, p_uses_argument_buffers), needs_view_mask_buffer(p_needs_view_mask_buffer), vert(std::move(p_vert)), frag(std::move(p_frag)) { } void DirectEncoder::set(MTL::Texture **p_textures, NS::Range p_range) { if (cache.update(p_range, p_textures)) { switch (mode) { case RENDER: { MTL::RenderCommandEncoder *enc = static_cast(encoder); enc->setVertexTextures(p_textures, p_range); enc->setFragmentTextures(p_textures, p_range); } break; case COMPUTE: { MTL::ComputeCommandEncoder *enc = static_cast(encoder); enc->setTextures(p_textures, p_range); } break; } } } void DirectEncoder::set(MTL::Buffer **p_buffers, const NS::UInteger *p_offsets, NS::Range p_range) { if (cache.update(p_range, p_buffers, p_offsets)) { switch (mode) { case RENDER: { MTL::RenderCommandEncoder *enc = static_cast(encoder); enc->setVertexBuffers(p_buffers, p_offsets, p_range); enc->setFragmentBuffers(p_buffers, p_offsets, p_range); } break; case COMPUTE: { MTL::ComputeCommandEncoder *enc = static_cast(encoder); enc->setBuffers(p_buffers, p_offsets, p_range); } break; } } } void DirectEncoder::set(MTL::Buffer *p_buffer, NS::UInteger p_offset, uint32_t p_index) { if (cache.update(p_buffer, p_offset, p_index)) { switch (mode) { case RENDER: { MTL::RenderCommandEncoder *enc = static_cast(encoder); enc->setVertexBuffer(p_buffer, p_offset, p_index); enc->setFragmentBuffer(p_buffer, p_offset, p_index); } break; case COMPUTE: { MTL::ComputeCommandEncoder *enc = static_cast(encoder); enc->setBuffer(p_buffer, p_offset, p_index); } break; } } } void DirectEncoder::set(MTL::SamplerState **p_samplers, NS::Range p_range) { if (cache.update(p_range, p_samplers)) { switch (mode) { case RENDER: { MTL::RenderCommandEncoder *enc = static_cast(encoder); enc->setVertexSamplerStates(p_samplers, p_range); enc->setFragmentSamplerStates(p_samplers, p_range); } break; case COMPUTE: { MTL::ComputeCommandEncoder *enc = static_cast(encoder); enc->setSamplerStates(p_samplers, p_range); } break; } } } GODOT_CLANG_WARNING_PUSH_AND_IGNORE("-Wunguarded-availability-new") void MDCommandBuffer::_bind_uniforms_argument_buffers(MDUniformSet *p_set, MDShader *p_shader, uint32_t p_set_index, uint32_t p_dynamic_offsets) { DEV_ASSERT(p_shader->uses_argument_buffers); DEV_ASSERT(render.encoder.get() != nullptr); MTL::RenderCommandEncoder *enc = render.encoder.get(); render.resource_tracker.merge_from(p_set->usage_to_resources); const UniformSet &shader_set = p_shader->sets[p_set_index]; // Check if this set has dynamic uniforms. if (!shader_set.dynamic_uniforms.is_empty()) { // Allocate from the ring buffer. uint32_t buffer_size = p_set->arg_buffer_data.size(); MDRingBuffer::Allocation alloc = allocate_arg_buffer(buffer_size); // Copy the base argument buffer data. memcpy(alloc.ptr, p_set->arg_buffer_data.ptr(), buffer_size); // Update dynamic buffer GPU addresses. uint64_t *ptr = (uint64_t *)alloc.ptr; DynamicOffsetLayout layout = p_shader->dynamic_offset_layout; uint32_t dynamic_index = 0; for (uint32_t i : shader_set.dynamic_uniforms) { RDD::BoundUniform const &uniform = p_set->uniforms[i]; const UniformInfo &ui = shader_set.uniforms[i]; const UniformInfo::Indexes &idx = ui.arg_buffer; uint32_t shift = layout.get_offset_index_shift(p_set_index, dynamic_index); dynamic_index++; uint32_t frame_idx = (p_dynamic_offsets >> shift) & 0xf; const MetalBufferDynamicInfo *buf_info = (const MetalBufferDynamicInfo *)uniform.ids[0].id; uint64_t gpu_address = buf_info->metal_buffer.get()->gpuAddress() + frame_idx * buf_info->size_bytes; *(uint64_t *)(ptr + idx.buffer) = gpu_address; } enc->setVertexBuffer(alloc.buffer, alloc.offset, p_set_index); enc->setFragmentBuffer(alloc.buffer, alloc.offset, p_set_index); } else { enc->setVertexBuffer(p_set->arg_buffer.get(), 0, p_set_index); enc->setFragmentBuffer(p_set->arg_buffer.get(), 0, p_set_index); } } void MDCommandBuffer::_bind_uniforms_direct(MDUniformSet *p_set, MDShader *p_shader, DirectEncoder p_enc, uint32_t p_set_index, uint32_t p_dynamic_offsets) { DEV_ASSERT(!p_shader->uses_argument_buffers); UniformSet const &set = p_shader->sets[p_set_index]; DynamicOffsetLayout layout = p_shader->dynamic_offset_layout; uint32_t dynamic_index = 0; for (uint32_t i = 0; i < MIN(p_set->uniforms.size(), set.uniforms.size()); i++) { RDD::BoundUniform const &uniform = p_set->uniforms[i]; const UniformInfo &ui = set.uniforms[i]; const UniformInfo::Indexes &indexes = ui.slot; uint32_t frame_idx; if (uniform.is_dynamic()) { uint32_t shift = layout.get_offset_index_shift(p_set_index, dynamic_index); dynamic_index++; frame_idx = (p_dynamic_offsets >> shift) & 0xf; } else { frame_idx = 0; } switch (uniform.type) { case RDD::UNIFORM_TYPE_SAMPLER: { size_t count = uniform.ids.size(); MTL::SamplerState **objects = ALLOCA_ARRAY(MTL::SamplerState *, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j]); } NS::Range sampler_range = { indexes.sampler, count }; p_enc.set(objects, sampler_range); } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { size_t count = uniform.ids.size() / 2; MTL::Texture **textures = ALLOCA_ARRAY(MTL::Texture *, count); MTL::SamplerState **samplers = ALLOCA_ARRAY(MTL::SamplerState *, count); for (uint32_t j = 0; j < count; j += 1) { samplers[j] = rid::get(uniform.ids[j * 2 + 0]); textures[j] = rid::get(uniform.ids[j * 2 + 1]); } NS::Range sampler_range = { indexes.sampler, count }; NS::Range texture_range = { indexes.texture, count }; p_enc.set(samplers, sampler_range); p_enc.set(textures, texture_range); } break; case RDD::UNIFORM_TYPE_TEXTURE: { size_t count = uniform.ids.size(); MTL::Texture **objects = ALLOCA_ARRAY(MTL::Texture *, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j]); } NS::Range texture_range = { indexes.texture, count }; p_enc.set(objects, texture_range); } break; case RDD::UNIFORM_TYPE_IMAGE: { size_t count = uniform.ids.size(); MTL::Texture **objects = ALLOCA_ARRAY(MTL::Texture *, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j]); } NS::Range texture_range = { indexes.texture, count }; p_enc.set(objects, texture_range); if (indexes.buffer != UINT32_MAX) { // Emulated atomic image access. MTL::Buffer **bufs = ALLOCA_ARRAY(MTL::Buffer *, count); for (size_t j = 0; j < count; j += 1) { MTL::Texture *obj = objects[j]; MTL::Texture *tex = obj->parentTexture() ? obj->parentTexture() : obj; bufs[j] = tex->buffer(); } NS::UInteger *offs = ALLOCA_ARRAY(NS::UInteger, count); bzero(offs, sizeof(NS::UInteger) * count); NS::Range buffer_range = { indexes.buffer, count }; p_enc.set(bufs, offs, buffer_range); } } break; case RDD::UNIFORM_TYPE_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_IMAGE_BUFFER: { CRASH_NOW_MSG("not implemented: UNIFORM_TYPE_IMAGE_BUFFER"); } break; case RDD::UNIFORM_TYPE_UNIFORM_BUFFER: case RDD::UNIFORM_TYPE_STORAGE_BUFFER: { const RDM::BufferInfo *buf_info = (const RDM::BufferInfo *)uniform.ids[0].id; p_enc.set(buf_info->metal_buffer.get(), 0, indexes.buffer); } break; case RDD::UNIFORM_TYPE_UNIFORM_BUFFER_DYNAMIC: case RDD::UNIFORM_TYPE_STORAGE_BUFFER_DYNAMIC: { const MetalBufferDynamicInfo *buf_info = (const MetalBufferDynamicInfo *)uniform.ids[0].id; p_enc.set(buf_info->metal_buffer.get(), frame_idx * buf_info->size_bytes, indexes.buffer); } break; case RDD::UNIFORM_TYPE_INPUT_ATTACHMENT: { size_t count = uniform.ids.size(); MTL::Texture **objects = ALLOCA_ARRAY(MTL::Texture *, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j]); } NS::Range texture_range = { indexes.texture, count }; p_enc.set(objects, texture_range); } break; default: { DEV_ASSERT(false); } } } } void MDCommandBuffer::_bind_uniforms_argument_buffers_compute(MDUniformSet *p_set, MDShader *p_shader, uint32_t p_set_index, uint32_t p_dynamic_offsets) { DEV_ASSERT(p_shader->uses_argument_buffers); DEV_ASSERT(compute.encoder.get() != nullptr); MTL::ComputeCommandEncoder *enc = compute.encoder.get(); compute.resource_tracker.merge_from(p_set->usage_to_resources); const UniformSet &shader_set = p_shader->sets[p_set_index]; // Check if this set has dynamic uniforms. if (!shader_set.dynamic_uniforms.is_empty()) { // Allocate from the ring buffer. uint32_t buffer_size = p_set->arg_buffer_data.size(); MDRingBuffer::Allocation alloc = allocate_arg_buffer(buffer_size); // Copy the base argument buffer data. memcpy(alloc.ptr, p_set->arg_buffer_data.ptr(), buffer_size); // Update dynamic buffer GPU addresses. uint64_t *ptr = (uint64_t *)alloc.ptr; DynamicOffsetLayout layout = p_shader->dynamic_offset_layout; uint32_t dynamic_index = 0; for (uint32_t i : shader_set.dynamic_uniforms) { RDD::BoundUniform const &uniform = p_set->uniforms[i]; const UniformInfo &ui = shader_set.uniforms[i]; const UniformInfo::Indexes &idx = ui.arg_buffer; uint32_t shift = layout.get_offset_index_shift(p_set_index, dynamic_index); dynamic_index++; uint32_t frame_idx = (p_dynamic_offsets >> shift) & 0xf; const MetalBufferDynamicInfo *buf_info = (const MetalBufferDynamicInfo *)uniform.ids[0].id; uint64_t gpu_address = buf_info->metal_buffer.get()->gpuAddress() + frame_idx * buf_info->size_bytes; *(uint64_t *)(ptr + idx.buffer) = gpu_address; } enc->setBuffer(alloc.buffer, alloc.offset, p_set_index); } else { enc->setBuffer(p_set->arg_buffer.get(), 0, p_set_index); } } GODOT_CLANG_WARNING_POP